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Computational aeroaeoustics requires efficient, high-resolution simulation tools. For smooth problems, this is

best accomplished with very high-order in space and time methods on small stencils. However, the complexity of
highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This
complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian
grids, and a Cauehy-Kowalewski recursion procedure for time advancement. In addition, a stencil constraint tree

reduces the complexity of interpolating grid paints that are located near wall boundaries. These procedures are
used to develop automatically and to implement very high-order methods (>15) for solving the linearized Euler
equations that can achieve less than one grid point per wavelength resolution away from boundaries by including
spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is

currently limited to llth order for grid aligned boundaries and to 2nd order for irregular boundaries.

I. Introduction

OISE generation and propagation are difficult to simulate nu-
merically for a variety of well-documented reasons and require

high-order numerical schemes.l.2 However, high-order schemes can
introduce a number of complications, such as the following:

1) Large stencils near boundaries, with either many fictitious grid
points, or large one-sided stencils, introduce programming com-
plexity and numerical instability. 3.4

2) High-order finite difference equations can require boundary

treatments beyond the physical conditions of the original problem,
which can excite spurious waves and instabilities. 5

3) Generation of high-order, smooth, body-fitted grids around
complex configurations can be difficult. 6

4) High-order formulations can lack nonlinear robustness. 6

5) The general usefulness of high-order methods is limited by
first-order accurate shock capturing. 7

The approach described in this paper will focus on the first three

issues. The fourth issue is being investigated, s The last issue may

possibly be avoided by including the physical vi_osity and resolv-

ing the steep gradients, 9 but with very high-resolution methods.

In addressing the first three concerns, we limit ourselves to wave

propagation and scattering problems governed by the linearized Eu-

let equations. Previous studies point out the advantages of high-

order methods for acoustical propagation. 1°-15 Many methods in

general use stop at fourth-order accuracy for time-dependent prob-

lems because they use Runge-Kutta methods. High-order Runge-
Kutta methods become notoriously difficult to derive because the

number of nonlinear order conditions that need to be solved grows
exponentially, that is, a 12th-order method has 7813 nonlinear order

conditions.16 21 The advantages of using Runge-Kutta methods at

orders less than 6 are commonly cited as flexibility, large stability
limits, and ease of programming. 22 The practical limit on their order

has been an impediment to the analysis of their use in high-order

approaches for time-dependent acoustic applications. 23

In this paper we use a series of explicit, local, high-order methods

that have the same order of accuracy in space as in time. 24,25 These

methods use Hermite interpolation on stencils that are two points
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wide and a Cauchy-Kowalewski recursive procedure 26for obtaining

time derivatives from the space derivatives of the interpolant. The

time derivatives are then used to advance the primitive variables and

their spatial derivatives in time with a Taylor series expansion. This

general approach is called the modified expansion solution approx-
imation (MESA) method. 11 This method can be used to derive and

implement algorithms with arbitrarily high orders of accuracy in

multiple space dimensions if their complexity is properly managed
and the computer's floating point precision is sufficiently high. 27

The complex task of developing and coding a multidimensional

interpolant for each MESA scheme can be eliminated using the
tensor product 2s of a new divided-difference form of Hermitian

spatial interpolation on a two-point stencil. 27 The task of obtain-

ing time derivatives with Cauchy-Kowalewski recursion 26 can be

implemented by unrolling the recursion. 29 With these techniques,

very high-order MESA schemes may be implemented using only a

few pages of code, and their accuracy may be adjusted by merely
changing loop indices, not the code. 27 This in turn enables local

solution adaptive order changes at each time step.

Most unsteady flow simulators using Cartesian grids in complex
geometries are based on a finite volume approach 3° with the excep-

tion of the work by Kurbatskii and Tam, 31 which specifically in-

vestigates acoustic scattering using a fourth-order accurate in time

finite difference approach. In their work, curved surfaces are approx-

imated with linear segments and ghost points are used to enforce

boundary conditions, all of which incurred a fair amount of pro-

gramming complexity to implement. 31

The approach presented here, however, does not need to approxi-

mate the geometry and the programming task is completed automat-
ically using computer algebra 29 in a manner similar to the works of

Wirth 32 and Steinberg and Roache. 33 This is accomplished by view-

ing the boundary conditions as applying uniformly in time through-

out the boundary surface. The boundary conditions can be differen-

tiated in the surface and in time, and the governing equations can

be used to obtain an infinite number of constraints in the boundary. 4

A stencil constraint tree is used to simplify the task of symbolically
imposing these high-order surface boundary conditions. 29

With these techniques, the accuracy of interior propagation seems
limited only by the floating point precision available. However, we

stably attained only 1lth-order accuracy for acoustic scattering in

a box with sides that are aligned to the grid, and we attained only

2nd-order accuracy in more general cases. These limits are due to

poorly conditioned matrix systems and numerical instability. How-

ever, these effects are dependent on the choice of boundary condi-

tions and require further study as will be shown.

The objective of this paper is to present and validate a new ap-

proach to aeroacoustic computations in complex geometries that

has the potential to fully utilize the precision of today's computers.
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Fig. 1 Cascade superimposed on grid.
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A common theme in this paper will be the many advantages of

using a two-point wide stencil that include very high resolution, so-
lution adaptability, and Courant-Friedrichs-Lewy (CFL) stability

near boundaries. One of the more intriguing results to be presented

here is the possibility of subgrid-scale resolution using solution

adaptable algorithms.

II. Governing Equations

We will demonstrate this new approach by solving the linearized

Euler equations in a uniform mean flowfield with mean velocity M,

perturbation velocity u, pressure p, and Cartesian coordinates x,.
We assume the initial conditions are known and that no additional

sources are present. The conservation of momentum and energy

equations are

Ouj _uj Op : O, Op Op Ouj = 0 (1)
-Z-+  x--T T

and are nondimensionalized with respect to the following scales:

length scale L, velocity scale c (sound speed), timescale L/c, density
scale ,oo (ambient density), and pressure scale poc 2. Also note that

the continuity equation is not included because it is not necessary

for calculating the acoustic response.

We will use 2s + 1-0rder explicit MESA methods, where s can be

any nonnegative integer. We will use only two-point stencils, where

each grid point contains the primitive solution variables p and ui
and their spatial derivatives (Hermitian data), for a total of 3 (s + 1)2

or 4(s + 1) 3 terms per grid point in two or three spatial dimensions,

respectively. For example, in two spatial dimensions with s = 1, we

have a third-order method that uses the following data on each grid

point: p, u, v, Px, Ux, Vx, py, Uy, vy, p:_., uxr, and vxr.

III. Grid Classification

Generally, we are interested in simulating the acoustical scattering
from objects that are defined parametrically and that are superim-
posed on a uniform Cartesian grid, as shown in Fig. 1 for a cascade
of three airfoils. Notice that each grid point is labeled with a closed
circle, an open circle, or the letter B, and represents an interior, a
fill, or a boundary grid point, respectively. In Fig. 1, the assumed
stencil size is three points per dimension, and a fill grid point is
simply one in which one of its neighboring grid points is either on
or beyond the boundary. It is referred to as a fill because that grid
point cannot be computed directly and needs to be filled with data.
If none of the neighboring grid points is on or beyond the boundary,
then it is classified as an interior grid point and can be computed

normally. All other grid points are considered boundary points and
are not needed because ghost grid points are not used.

Grid point classification proceeds by first labeling all grid points

as boundary type and then finding the interior and fill-type grid
points with a simple recursive procedure. The procedure determines
if any neighboring grid points are boundary points by checking if

the surface of any object intersects the imaginary line joining the

center point to its neighbor. Because we are using a finite difference
method, we need to check only for line-to-surface intersections,
which is much simpler than determining the surface-to-surface in-
tersections necessary if a finite volume method is used. If there is no
intersection, then the current grid point is a fill point and recursion
stops. Otherwise it is an interior point, and the procedure is called
again, but starting with the neighboring grid points.

IV. Advancing the Solution Using MESA

With the uniform Cartesian grid points correctly labeled and the

initial data assigned to all of the interior and fill grid points, the next

step is to advance the solution in time. Because interior grid points
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Fig. 2 Staggered grid using two-point stencil.
X X

• • •
X X

and their stencils are completely contained within the computational

domain, they will be advanced directly using an efficient form of

the MESA schemes. However, because a fill point's stencil reaches

outside the computational .domain field, its data will be obtained

by spatial interpolation. At each time step, every grid point is first

treated as an interior point to simplify the looping structure for

efficient vector and parallel operations, and then the relatively few

fill points are recomputed using interpolation.

Advancing the interior points with MESA is a three-step process.

The spatial derivatives at the center of the stencil are approximated

using spatial interpolation, the spatial derivatives are converted to

time derivatives, and the solution is advanced in time with a Taylor
series. The MESA scheme 34 is a general approach to developing

high-order numerical schemes, but for this work we are only inter-

ested in methods with stencils that are two grid points wide in all

space dimensions because they enable arbitrarily high-order spa-

tial interpolation with no decrease in CFL stability bounds near a
boundary.

These two-point stencil schemes are numerically stable only when
a staggered grid is used at each time step _ as shown in Fig. 2 for a

two-dimensional stencil. The locations marked with Xs in Fig. 2 are

advanced first using the 2 x 2 stencils centered about each X. Next,
the Hermitian data now stored at the X locations are used as initial

data to advance the solution to the center as indicated by the large

dot in Fig. 2. Staggering the grid has the same effect as applying

the MESA scheme to the entire 3 x 3 stencil in the Fig. 2 and then

adding artificial dissipation. It is, however, more efficient to stagger

the grid because neighboring grid points will reuse the data at the X

locations in Fig. 2. In two dimensions, this staggered grid procedure

is numerically stable if s4

At l
,X.= -- < (2)

Ax - I + max{IMxl, lMyl}

A. Hermitian Derivative Approximation
The MESA scheme requires an approximation to the solution of

the primitive variables p and ui and their spatial derivatives at the

center of each stencil. Let the function f (x, y) be an approximation

of one of the primitive variables from Eqs. (1) and define its origin

to be at the center of each two-point stencil shown in Fig. 3. Then in

two dimensions, the following data must be approximated once for

each primitive variable If(x, y) = p(x, y), u(x, y), and v(x, y)]:

oa+b f (o, O)
'¢ a,b:a,b=O, 1,2 ..... 2s+l (3)

3xa#y b

On a Cartesian grid, these approximations can be found using
tensor product interpolation 28 in two or three dimensions if the

interpolant

2s÷ 12_+1

S(x" Y)= Z Z C_J xiyj (4)
i o j-O

with its origin at stencil center is used with a 2s + l-order method

and if the following data is available at each grid point:

3" _b f (x. y)
¥ a,b:a,b=O, 1,2 ..... s (5)

c_xaOy 1'

Determining the Ci( j = (1/i!j!)[8' + J f(x. y)/3xiy j] terms in
the two-dimensional in_erpolant IEq. (4)] for very high-order meth-

ods is very difficult and inefficient unless it is reduced to a series

of one-dimensional interpolations by using tensor products. Briefly,

this is accomplished by performing one-dimensional interpolations
of the form 27

2s+i

f x>= C[x i (6)

i-0

Fig. 3
stencil.

Two-point two-dimensional

X=Xo x=O

Y=Ya V = Yl

(

-y=0 y=0 -

X=X 0 x:O X=X 1

Y = Y0 Y = Y0

it is then possible to interpolate in the x direction, using the data

on the grid points, the following two sets of data for y = Y0 and Yl:

(l_Y+Jf(x=O,y) i =0,1,2 ..... 2s+l (7)
073y-_ ' Vi, j: .\] J=0,1 ..... s

Then these data are used to interpolate in the y direction using

the following one-dimensional shape function:

2_-I

f(x =0, y)= Z cf/ (8)

j=0

Once the C_ terms are determined, they provide the data shown in
Eq. (3):

C:=(+) 3i'jf(x=O'y=O)3xi3y j (9)

The one-dimensional shape functions [Eqs. (6) and (8)] can be di-

rectly solved using computer algebra (Gr0ebner bases) (see Ref. 18)

to create algebraic expressions for each C ! term for up to ap-

proximately 30th-order methods. However, this results in lengthy,

inefficient expressions that limit the accuracy and prevent instan-

taneous accuracy changes necessary for resolving varying wave-

length scales. A better way is to use Hermitian divided-differences,

which will create the equivalent one-dimensional shape function
(Newton's interpolatory formula), 35

2{s + a) 1

f(x)= Z Qi._(X_Xo),+t(x_xl), I,+I)
i_s+l

+ _ Qi,,(x - xo)' (10)

i=0

where the Q,._ are the traditional Hermitian divided differences from

the tableau (shown in Fig. 4) which are given by

DO/= O,s

DOj =0, i

(÷).,go,Qi,j = 3x--'7

Qi+_+l.j = 3xJ

END DO

END DO

DOi=s+l,2*s+l

DOj = i - s, i

Qi,j-I -- Qi-l,j-i

Qi,j = Ax

END DO

END DO
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Q2,1 Q3,3
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Q5,o

Fig. 4

Q4,4

Q5,5

Q5,4

Fifth-order divided-difference tableau.

It is not enough to simply find Newton's interpolatory formula

[Eq. (10)] because we need to approximate p, u, and v and their

spatial derivatives at the stencil center. This would ordinarily require

differentiating Newton's Eq. (10) using computer algebra. By the

product rule of differentiation, Newton's formula will double in size

after each differentiation, and a 50th-order MESA scheme would

need a Newton's formula of approximately 250 -_ 1016 terms. This

issue is eliminated by the following result, which is applicable only

to two-point stencils27:

2s-1

OaX f (x = O) EOxaX -- Qi.i Zi.ea (11)
i=dx

where the function Z,._ is independent of space and time and can

be computed simply as follows:

DOdx = 0, 2s + 1

DO/ =dx, s

Z,,_- (-x0)" ,ix)
(i- dx)r

END DO

END DO (12)

DOdx = 0,2s + 1

DO/ =s+l,2s+l

Zi,dx :
(d.x _ r)!r[ (_xo)(S + l-,)(_xl)(i s-1 e_ +r)

dx 1 r r-1 \

* H [i-(s+l)-e]*I"I Is+l-k] )
e=O k=O

END DO

END DO (13)

With these developments it is now possible to approximate effi-

ciently all solution variables and their derivatives at the center of a

two-point stencil to any level of accuracy with only a page of code.

Because these explicit forms are completely algebraic, it is possi-

ble to adapt dynamically the accuracy of the approximation to the

solution evolution.

B. Time Evolution

To utilize fully the arbitrarily high-order accuracy in space that is

possible on two-point stencils, it is necessary to achieve similar accu-

racy in time. This can be accomplished with the MESA method. This

method uses the governing equations [Eqs. (1)] to convert the re-

cently approximated spatial derivatives to mixed space-time deriva-

tives in a manner reminiscent of the Lax-Wendroff approach 36 by

differentiating the following equations in space and time:

au,_ I 0u, as) as :-(M, as au,]at tMi-_xi + _xj ' at \ _ + axj] (14)

The mixed space-time derivatives are then used in modi fled series

expansions with local coordinates about the center of the interpola-

tion stencil at the current time level. For two-dimensional problems,

the following series are used, with O = 2s ÷ 1:

O O 2(0)

p(x, y,t) = E E E C:L,xiYJ"

i Oj Ok 0

O O 2(0)

U(x, y,t) = E E E C_.i,kxiYJ"

i=0 j =0 k:0

O 0 2(0)

v(x, y, t): E E E C_':Jkx'ystj<

i =0 j :0 k :0

(15)

where

C/j, k = (_)O'-J_'f(X_ox__7___ "_=O'y =0, t =0)

The variables p, u, and v and their spatial derivatives are then

advanced to the next time step by evaluating Eq. (15) and its spatial

derivatives with x = 0, y = 0, and t = At as follows:

aa+bp(O,O, At) 2(o1
N_-'_(a i I P J<= Z._ "b')Ca,b.kAt

axayb k=0

a _ +bu(O, O, At)

Oxay b

2(0)

-- 2(a!b!)C_,b,kAtk

k=0

2(O)
a_+bv(O, O, At)

-- E(a!b!)C_,b,kAtk (16)
Oxayb k=0

By unrolling the Cauchy-Kowalewski recursion in Eq. (14), we

can quickly express the mixed space-time derivatives C_ b k, C_.b.k,

and C_'b.k in Eq. (16) in terms of the space derivatives C_.b'0, C_.b. 0,

and C_' b,o, which were approximated at the stencil center in the last

section. The following loop efficiently unrolls the recursion29:

DOk = 1, 20

DOb =0, O

DOa = 0, O

h=a+l, b=b÷l, k=k-1

, (g.,c" . +%.D)q,,, = (-((a) •

- (b) * (M r * CPa,b..k + C:,b,i) ) Ik

u u C p uCo.b.k=(--((b)*M,*Co.i,.'k)--(a)*( _.,._ +M_*C_,b,i))l k

v C p o v
Ca,b, k : (-((b)* ( a.i_,i: + Mr * Ca,b,'k)) -(ga)* Mx * Ca,b,j,)/k

END DO

END DO

END DO (17)

This simple form applies to uniform mean flow, but for general

flows Cauchy-Kowalewski recursion becomes complicated. 26 For
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example, using Eq. (14) to calculate the mixed space-time derivative

C'_.o. I , when the mean flow varies in space, results in the expression

02U __ (aMi Ou _2u a2p_

OtOx k,-_x Oxi + Miz-__2 +Oxi-_x2] (18)

which requires knowing the derivatives of the mean flow, 0 Mi lax,

and the higher-order derivatives of Eq. (18) require higher-order

derivatives of the mean flow as well. Getting this information may

require computing the mean flow using a very high-order MESA

method as well, and the equations will grow exponentially unless a

simple form analogous to Eq. (11 ) is found. Despite these complica-

tions, Cauchy-Kowalewski recursion, when automated with com-

puter algebra tools, 29 can produce numerical schemes with higher

order than is currently possible with Runge-Kutta methods.

V. Including Wall Boundaries

The procedure for advancing the interior grid points is not appli-

cable to fill grid points near boundaries because part of their stencil

is on or within a solid object. We obtain data for these points at each

time step with a Hermite interpotant that is consistent with the wall

boundary conditions and that uses the nearby solution at interior

grid points. This Hermite interpolant is equivalent to the interpolant

used for the interior grid points in Eq. (4) but is written as

J _ ;)e_ _ dyf(xi ' yj)
f(x, y) = E _ (H_,,._(x))(Hyj.dy(y))

Ox_OydY
i,j 0dX dv :=0

(19)

where the H_,j_(x) and nyj.dy(Y ) terms are 2s+ 1-order poly-

nomials in x and y, respectively. Because the data at the interior

grid points are known, this Hermite form of the interpolant has the

advantage of reducing the number of unknown coefficients, C s

in Eq. (4), to only the unknown data which are required at the _ii

points, O_ * dr f (xi, y))/Ox d_ Oy dr .

Each shaded box in Fig. 5 represents an interpolation region used

for interpolating the values at the fill points in each box. The bound-

ary conditions are imposed upon the shape function for each box

at the locations on the surface intersected by the arrows. The num-

bers inside each box show the sequence in which the fill points are

interpolated.

A. Choice of Wall Boundary Conditions

Each fill point on the grid provides (s + 1 )2 unknowns in Eq. (19),

so that an equivalent number of constraint equations must be ob-

tained. An infinite number of constraints can be obtained by ex-

ploiting that the physical boundary conditions apply uniformly in

time everywhere in the boundary. 4 For Eqs. (1), the inviscid bound-

ary condition is that the normal component of velocity is zero at a

surface:

v- _ = 0 (20)

Because vorticity is convected with the mean flow, we also assume

in this work that there is no vorticity at a surface:

Ov Ou
o_ -- -- 0 (21)

Ox Oy

B B B B

B B B B

B B B B

B B B B

B B B B

B B B B

B B B B

B B B B
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Fig. 5 Interpolating fill point data.
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For flat walls, the boundary conditions for this case are

_2n + T v{ 1

02n*l+Tp
-0

Mlz. +I OU

_=0, Vn, T:n,T_(0,1,2 .... )

o2n + l + T vi
- 0 (22)

a_2._ _afr

where V is the magnitude of the perturbation velocity vector with

velocity components u and v in the Cartesian x- and y-axis direc-

tions, p is the scalar pressure, _ is the unit vector normal to the wall

surface direction, f" is the unit vector tangent to the wall boundary

direction, V_ is the velocity tangential to the wall, and V6 is the

velocity normal to the wall.
Selecting which set of boundary conditions to use and where to

apply them on the boundary can be simplified by considering the

general form of the normal and tangential derivatives of f(x, y)
(Ref. 37):

oN+rf(x,y) ( O a'u{ 0 8) r3 _?# OU = Ox _x + _y -_.V) _- Oy -_x + OX-_y f (x , y )

(23)

If each operator is expressed in its binomial series form and the

order of summation rearranged, then by substituting Eq. (19) into

Eq. (23) the following form is derived:

aN +rf(x ' y) _ _1 _ [Ydx,dy.x,,Yi] _dx+dYf(xi ' yj) (24)
o_lN fr _ Oxdx Oydy

i,j = 0 d.x dv =0

where Y_.dy._,.yj is defined by

r N 3u+r(H_,,_(x)H)>dy(y))

yda,dy._,.y, =EEK(a,b) OXN+T a_bOya+ b (25)
a=O b=O

( N[T, ) N+a b T a+b, 1)T aK(a,b)= (N-b)[b!(T-a)!a! rlx 0_, t-

(26)

Because maintaining numerical stability for hyperbolic problems

normally requires methods that include all information from within

the domain of dependence defined by the characteristic surfaces, 38
we want to select N = 2n + 1 and T so that

ON - r (H_, .a_Hy, ,dy)

OX N+T a-bOya+b

in Eq. (25) never becomes zero because this would exclude

some of the influence of neighboring grid points. For example, if

Y_,ay._,.yj = 0, then the grid point data Od_+dYf(xi, yj)/Oxe_Oy ay
would be excluded from the boundary condition in Eq. (24).

Similarly, if a part of the sum forming Y_,dy.x,.rj is missing,
then some influence of the corresponding grid point is absent as

well. Maintaining the full influence is accomplished by choos-

ing (n :n = 0, 1, 2 ..... s) and IT : T = 0, 1,2 ..... 2(s - n)] for the
first and third boundary conditions in Eq. (22). Those conditions

will produce linearly consistent systems that can be solved to de-
termine the interpolant or, equivalently, the data required at the

fill point. However, in the special case in which rl_ = 0 or r/y = 0,

we need to use the different conditions (n : n = 0, 1,2 ..... s) and

(T : T = 0, 1, 2 ..... s) to ensure nonsingular matrix systems. This

special case does not result in a loss of information because the

affected terms in Eq. (25) are supposed to be zero. For example, a

third-order MESA method would use the following pressure bound-

ary conditions at each location indicated by the arrows in Fig. 5:

8pp = O, O2P -- O, Op - 0, O3----P-P= 0 (27)

The same method applied to the special case shown in Fig. 6 would
use the conditions

0p 02p =0, 03p =0, a4P -0 (28)

B. Symbolic Solution
The shape function for each fill point can now be solved using

the boundary conditions and the known interior data in each shaded

region of Fig. 5. The boundary condition Eqs. (22) are applied to

the shape function Eq. (24) to solve for the unknown data at the fill

points. This linear system of (s + 1)2 equations per fill point may
be written as

Mf = Nd (29)

where M and N are matrices whose elements are given by Yax.dy._,.yj
in Eq. (25), wheref is a vector of the data needed for the fill points

and where d is a vector of known data from the interior points.

This system can be solved using any linear solver at each time step,

but for high-order methods this becomes expensive and the matrices

become ill conditioned. A better approach is to solve symbolically

this system once to form the algebraic solution

f = M]Nd (30)

where M and N are numerical matrices dependent on the geometry

but the vectors are symbolic. This results in an algebraic expres-

sion for each fill point as a linear combination of the interior grid

point data. It is then a simple matter to evaluate the fill points by

updating the vector d at each time step and evaluating their linear
combinations.

This approach worked well for up to 1 lth-order accuracy in two
dimensions for the case (shown in Fig. 6) of no mean convection in

an unrotated box that is aligned with the coordinate axes. For higher-

order algorithms, the matrix M becomes ill conditioned, and finding

its numerical inverse becomes difficult, inefficient, and unstable.

Resorting to Gaussian elimination would be more stable for high-
order cases, but the cost at each time step is prohibitive.

VI. Stencil Constraint Tree

Instead of using a poorly conditioned numeric matrix M, its sym-

bolic form can be inverted. There are actually only a relatively few

symbolic matrices that need to be inverted regardless of the ge-

ometry. These few cases can be found by using a new tree data

structure, referred to as a stencil constraint tree (SCT), that repre-

sents all possible stencil configurations. For example, in Fig. 7, all

possible 3 x 3 stencil configurations are shown in which 1) the top,

center grid point is a boundary point (indicated by B); 2) the center,

center grid point is a fill point (open circles); and 3) the bottom,

center grid point is an interior point (filled-in circles). The SCT for

the simple case of a 2 x 2 stencil that has an interior grid point in its

top-right location is shown in Fig. 8. It is constructed by propagat-

ing symbolic constraints in a manner analogous to Waltz's symbolic

constraint propagation algorithm (see Ref. 39).
Once the tree is constructed, a particular stencil configuration is

found by traversing the SCT from top to bottom along any path and

converting the branch labels using Table 1 and Fig. 9. For example,
the branch number 10 corresponds to position 4 and label 1 in Table 1

and represents an interior grid point that is located at the top-right

comer of the stencil. A similar procedure is applicable to larger

stencils as well. Notice that identifying a particular n-point stencil

using an SCT can be done in n 2 or n 3 steps for two- and three-

dimensional stencils, respectively, instead of the 3"2n 2 and 3"3n 3

comparisons typically required using a brute-force comparison of

all stencil configurations.

Table 1 Branch number legend

Position Label Branch

1 1-3 1-3
2 1-3 4-6
3 1-3 7-9
4 1-3 10-12
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Fig. 6 Stable unrotated box case.

Fig. 7 All possible $7 stencil configurations with fill at center: 16 cases.

A. Constructing the Tree

The most significant advantage of the SCT is it can reduce the

number of symbolic matrices from Eq. (29) that need to be consid-

ered. This is accomplished by propagating natural constraints during

the construction of the tree. 29 Natural constraints are simply a list of

rules that are a natural consequence of the definitions of interior, fill,

and boundary grid points on a Cartesian grid. For example, some

natural constraints that limit the set of stencil configurations are

1) an interior grid point is never adjacent to a boundary grid point

and its converse and 2) for two- and three-point stencils, a fill grid

point will always be adjacent to at least one boundary point. If the

natural constraints are not enforced, then the list of stencil configu-

rations in Fig. 7 grows to 36 = 729 because only the middle column

is defined. The advantages of enforcing natural constraints increase

with both spatial dimension and stencil size.

10

Fig. $ Two-point stencil constraint tree.
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Fig. 9 Stencil grid positions.

e= Interior Grid Point Type

o= Filt Grid Point Type

Z= Not a Boundary Grid Point Type

X= Unspecified Grid Point Type

[3= Boundary Grid Point Type

 xxxx
,x x.gx.x
XZ_zx
xZ-zxi

• KT._zxL

$8 $7

Fig. 10 Sub 3 x 3 stencil sym-
metry.

B. Small Stencils Guarantee CFL Stability
These techniques can be applied to both of the 5 x 5 stencils

shown in Fig. 10 to construct their SCT. This SCT will represent all

possible 5 x 5 stencils that can occur with a fill point at its center.

We find that there are only 65 unique rotationally symmetric cases
of 3 x 3 stencils centered about the fill point. 29 All other possible

stencil configurations are simply rotations of this core group. Note
that we assume there will be at least one interior point next to the

fill point, otherwise that fill point is not needed as shown in the

corners of Fig. 5. As shown in Fig. 10, there will always be a 3 x 3
stencil contained within the 5 x 5 stencil that does not contain a

boundary point and yet always contains a fill point on its edge or
corner• This guarantees the existence of a 3 x 3 stencil for each fill

point in any geometry that is not intersected by the surface geometry.
Therefore, it will always be possible to expand the stencil outward

from each fill point to the surface where the boundary conditions are

imposed. This in turn guarantees that the CFL stability criterion will
be satisfied because the domain of dependence for the fill interpolant

is increased from a standard stencil size.

This CFL guarantee is a property of two-point and three-point

stencils in two or three dimensions. Four-point stencils or larger will

require smaller time steps near the boundary and make it difficult to

choose locations on the surface that guarantee a linearly consistent

system in Eq. (29).

[BZZB

%'° ,_

BZZB

o
i

BBZB

BBZB

*o*o
<

o

BBZZ _ZBZ BZBB

ooo iooo ot_
t
i

_Bzz _ZBZ BZB_
i.o.+5+.o.o.+_+ °gg,o

i
,+

+

BBBZ

aeo

BBBZ

ooo
<

o

BBBB

BBBB

e

= Possibly Degenerate

Fig. 11 S8 symmetrical mapping: 18 cases.
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Fig. 12 Use regions 2 and 3 instead of region 1.

A. Efficient Retrieval of Fill Point Solutions
Once all of the stencil configurations are known and the direction

in which to map each fill point to the surface is found, then the

symbolic form is known for every matrix M and N in Eq. (29).
Each of these systems may then be symbolically solved, and their

subsequent solutions may be stored in the leaves of the SCT for fast
retrieval later.

The leaves of the tree will contain algebraic solutions for every

fill point in any geometrical configuration. They can be used and
reused many times without the need for solving Eq. (29) again. For

example, if the walls are moving then the Cartesian grid points will

need to be relabeled, but the same SCT, mapping, and symbolic

solutions can be used at each time step to interpolate efficiently the

data needed at each fill point.

VII. Mapping

All possible 5 x 5 stencil configurations containing a fill point are
known after the construction of the SCT for the stencils in Fig. 10.

This information is used to select locations on the boundary at which

the boundary conditions are enforced. A surface will always occur

between a fill point and a boundary point, so that even before we

know exactly where the surface is, we know in which direction to

go to find the surface•

We would like to use the points on the surface that are closest

to the interpolation stencil while ensuring that never more than N
locations are collinear with the coordinate axes for each N-point

interpolation stencil. These conditions maximize the accuracy of the

interpolant and ensure that the matrix M in Eq. (29) is nonsingular.
One such mapping is shown in Fig. 11 for the upper triangular part of

the outlined $8 3 x 3 stencil in Fig. 10. The degenerate cases occur

because it is not guaranteed that a nearby surface will be found using

the mapping shown. These cases are usually not an issue in practice

and can be avoided by choosing alternate interpolation regions as

in Fig. 12 or by constructing the SCT for a larger stencil around the

fill point in Fig. 10 and then choose a mapping with this additional
information.

Implementing higher accuracy boundary conditions with this ap-

proach requires increasing the depth of Hermitian data at each grid

point and increasing the number of boundary conditions used from

Eq. (22), but the stencil size used for interpolation is never changed•

Therefore, we never need to remap the fill points to the boundary
and the CFL stability is not affected•

VIII. Numerical Results

All of the following results solve the linearized Euler equations

[Eqs. (1)1 in uniform mean flow using the approaches already de-
scribed. This approach to developing very-high order methods was

applied to both wave propagation and acoustic scattering problems

in various test geometries.

A. Acoustic Propagation
For mean convection velocity M in an open biperiodic (triperi-

odic) domain (for d = 2 or 3 dimensions), the linearized Euler equa-

tions have the following analytical solution:

d d

p(x,t)=C, HSx,,ui(x,t)=-St.,Cx, I-Isxj (31)

i=1 j_i

j 1

where

Cx, = cos(Wiyfxi) , Sxi = sin(Wirr£D

W, sin(rr t IIWII)
C, = cos(rrtllWII), S,.+ -

IIWII

IIWll = W_, _+ : (Xi -- Mit)
a=l
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Resolution, efficiency, and memory usage of higher-order

The properties of very high-order methods were tested on

this problem with mean velocity M= (1, 1) and wave number

W = (1, 1), and the results were used to validate the automatically

generated codes. The methods were compared for efficiency and

resolution; the results for up to 29th-order accuracy (using 64-bit

precision) are shown in Fig. 13. Notice that higher-order meth-

ods perform better in each part of Fig. 13 until machine preci-

sion is reached. By increasing the wave number in Eq. (31) to

W = (W_ > 2, W_ > 2), we also see that very high-order methods
offer subgrid scale resolution as shown to the left of the ordinate

axis at the top of Fig. 13. Similar results were found while solving
three-dimensional cases as well. 29

The resolution of the methods improves while using 128-bit pre-

cision as the accuracy increases until about the 21 st order for signals

with eight grid points per wavelength: This limit varies with signal
frequency, if the order is increased above this limit, then the resolu-

tion of each signal degrades from roundoff errors that begin to dom-

inate around 57th-order accuracy for signals with a wavelength of

eight grid points. However, by selecting wave number W = (16, 16)

in Eq. (31), and by using 40th-60th order methods on a two-point

stencil, it is possible to resolve 4 wavelengths per grid point. Note

that this is not a violation of the Nyquist criterion _° because each

grid point contains multiple data values for Hermite interpolation.
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Fig. 15 Unrotated box grid resolution studies.

For extremely high-order methods, the convergence slope at the

top of Fig. 13 is so steep that essentially only a specific frequency

is correctly resolved with finite precision floating point hardware

unless a method for detecting roundoff error is available. Fortu-

nately, roundoff error may be detected by checking the columns of

the Hermite divided-difference tableau in Fig. 4, which is used for

the interpolation. The sum of column j should equal the difference

of the first and last terms in column j - 1 (Refs. 27 and 41). If

roundoff error begins to occur, simply stop constructing the tableau
at that point and use the resulting lower-order method. This saves

computational effort and enables the solution of a field containing

widely varying wavelengths.

B. Acoustic Scattering
With the exceptional qualities of very high-order methods estab-

lished for wave propagation, the simulation of acoustic scattering

from within a rotated box and a circle was completed (Fig. 14). An

analytical solution to wave scattering within the rotated box with no
mean convection is

p(x, y, t) = - cos(V"2rrt) cos(rrx) cos0ry) (32)

u(x, y, t) = -[cos(try) sin(V'2rr t) sin(zrx)/_/2] (33)

v(x, y, t) = -[cos(rrx) sin(_r2ztt) sin(rry)/.v/2] (34)

where the coordinate system is aligned with the box. An analytical

solution to wave scattering within a circle with no mean convection is

5 Jo(ir) cos(it)
p(r, O, t) = (35)

_Jo(X)

where _ =3.83171, J0 is the Bessel function of the first kind of

order 0, and polar coordinates are used.
For the case of an unrotated box, we found stable solutions

with 2nd-, 3rd-, 5th-, 7th-, 9th-, and llth-order accuracy using

boundary conditions from Eq. (22) with (n : n = 0, 1,2 ..... s) and

(T : T = 0, 1, 2 ..... s) as shown in Fig. 15. Using the boundary

conditions in Eq. (22) with n, T = 0, we found stable second-order
solutions for all box and circle cases, regardless of the rotation an-

gle. The first five plots in Fig. 14 correspond to box rotation angles
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0, _r/16, 7r/8, Jr/4, and 7r/3, respectively. The last curve in Fig. 14

shows a second-order method without wall boundaries.

C. Numerical Stability

For second-order boundary treatments, ordering interpolation re-

gions by the number of fill points they contain from fewest to most

and then interpolating the fill points in that order resulted in sta-

ble solutions for irregular geometries. There are, however, multiple

stable choices of shaded regions and interpolation sequences, and

rather than relying on numerical experiments, an important next step

is to use the symbolic form in Eq. (29), of which only a relatively

few cases are possible, to perform a complete stability analysis.

With this better understanding, perhaps higher-order conditions can

be made reliably stable in irregular geometries by explicitly adding

artificial dissipation or by rearranging the interpolation regions.

IX. Conclusions

Small stencils containing Hermitian data were found to possess

key properties necessary for developing exceptionally efficient, ex-

plicit algorithms of arbitrary formal accuracy in space and time

for scattering problems with arbitrary surface orientations. This is

accomplished by approximating spatial derivatives using a special

form of two-point Hermitian divided-difference spatial interpolation

and an unrolled Cauchy-Kowalewski recursion procedure for time

advancement. A stencil constraint tree is used to find all possible

stencil configurations and their respectively well-posed boundary

conditions so that grid points near arbitrarily oriented surfaces may

be interpolated. Computer algebra is then used to find the symbolic

shape function for each stencil configuration, and the stencil con-

straint tree is used to identify quickly the correct interpolant for each

near boundary grid point.

In spite of the development of simple procedures for the time evo-

lution at all grid points, the FORTRAN application code of a very

high-order method is complicated, and so the task of programming

was automated using computer algebra procedures. These proce-

dures have successfully produced 1) stable, parallel 57th-order wave

propagation methods in two and three spatial dimensions with peri-

odic boundary conditions, 2) stable 2nd-order methods for scatter-

ing problems with generalized surface boundary conditions in two

spatial dimensions, and 3) stable 1 lth-order methods for scattering

problems with surfaces aligned to the grid in two spatial dimensions.

The resolution and efficiency of these methods improve with or-

der until the accuracy exceeds the limits of machine precision. At

these very high orders of design accuracy, it is necessary to control

roundoff error, and a method for doing this is suggested.

The procedures discussed here provide a systematic method for

quickly changing the accuracy of both the interior propagation and

wall boundary condition implementations to suit flow conditions. It

was shown that very high-order methods (>15) provide an oppor-

tunity for subgrid-scale resolution.

These results demonstrate the potential value of very high accu-

racy in time as well as in space for aeroacoustic calculations. How-

ever, a detailed stability analysis for these procedures remains to be

done for the generalized high-order surface conditions. A method

for unrolling nonlinear Cauchy-Kowalewski recursion needs to be

developed to achieve arbitrarily high accuracy in time for nonlinear

problems. Finally, arbitrary order accuracy nonreflecting boundary

conditions need to be developed to take full advantage of the arbi-

trary interior domain accuracy.

Nonetheless, it is necessary to use Hermitian data for achiev-

ing very high-order solutions because Lagrangian stencils simply

become too large. Because since small stencils allow for a very

simple interpolation procedure of arbitrary accuracy while main-

taining CFL stability near boundaries, future work will be devoted

to exploiting them in substantial applications.
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